7 research outputs found

    The role of the posterior fusiform gyrus in reading

    Get PDF
    Studies of skilled reading [Price, C. J., & Mechelli, A. Reading and reading disturbance. Current Opinion in Neurobiology, 15, 231–238, 2005], its acquisition in children [Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Mencl, W. E., Fulbright, R. K., Skudlarski, P., et al. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biological Psychiatry, 52, 101–110, 2002; Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773, 2003], and its impairment in patients with pure alexia [Leff, A. P., Crewes, H., Plant, G. T., Scott, S. K., Kennard, C., & Wise, R. J. The functional anatomy of single word reading in patients with hemianopic and pure alexia. Brain, 124, 510–521, 2001] all highlight the importance of the left posterior fusiform cortex in visual word recognition. We used visual masked priming and functional magnetic resonance imaging to elucidate the specific functional contribution of this region to reading and found that (1) unlike words, repetition of pseudowords (“solst-solst”) did not produce a neural priming effect in this region, (2) orthographically related words such as “corner-corn” did produce a neural priming effect, but (3) this orthographic priming effect was reduced when prime-target pairs were semantically related (“teacher-teach”). These findings conflict with the notion of stored visual word forms and instead suggest that this region acts as an interface between visual form information and higher order stimulus properties such as its associated sound and meaning. More importantly, this function is not specific to reading but is also engaged when processing any meaningful visual stimulus

    Really Straight Graph Drawings

    No full text
    We study straight-line drawings of graphs with few segments and few slopes. Optimal results are obtained for all trees. Tight bounds are obtained for outerplanar graphs, 2-trees, and planar 3-trees. We prove that every 3-connected plane graph on n vertices has a plane drawing with at most 5n/2 segments and at most 2n slopes. We prove that every cubic 3-connected plane graph has a plane drawing with three slopes (and three bends on the outerface). Drawings of non-planar graphs with few slopes are also considered. For example, interval graphs, co-comparability graphs and AT-free graphs are shown to have have drawings in which the number of slopes is bounded by the maximum degree. We prove that graphs of bounded degree and bounded treewidth have drawings with n) slopes. Finally we prove that every graph has a drawing with one bend per edge, in which the number of slopes is at most one more than the maximum degree

    Social influence and creativity in organizations: A multi-level lens for theory, research, and practice

    No full text
    corecore